TERAMAE Hiroyuki

写真a

Affiliation

Faculty of Science Depertment of Chemistry

Title

Professor

External Link

Degree 【 display / non-display

  • 京都大学工学博士 ( 1984.03   京都大学 )

Research Areas 【 display / non-display

  • Nanotechnology/Materials / Fundamental physical chemistry

From School 【 display / non-display

  • Kyoto University   Faculty of Engineering   Graduated

    - 1979.03

      More details

    Country:Japan

From Graduate School 【 display / non-display

  • Kyoto University   Graduate School, Division of Engineering   Doctor's Course   Completed

    - 1984.03

      More details

    Country:Japan

  • Kyoto University   Graduate School, Division of Engineering   Master's Course   Completed

    - 1981.03

      More details

    Country:Japan

Employment Record in Research 【 display / non-display

  • Josai University   Faculty of Science   Depertment of Chemistry   Professor

    2004.04

External Career 【 display / non-display

  • Meiji University   Lecturer

    2009.04 - 2023.03

      More details

    Country:Japan

  • Rikkyo University   Lecturer

    2002.04 - 2006.03

  • ATR適応コミュニケーション研究所   主任研究員

    2001.10 - 2002.03

  • ATR環境適応通信研究所   主任研究員

    1999.01 - 2001.09

  • Rikkyo University   Lecturer

    1997.04 - 1998.03

display all >>

Professional Memberships 【 display / non-display

  • 日本コンピュータ化学会

    1998.04

  • アメリカ化学会

    1996.04

  • 応用物理学会

    1992.07 - 1996.03

  • 日本化学会

    1990.04

 

Research Career 【 display / non-display

  • 分子軌道法と機械学習による分子物性の予測

    The Other Research Programs  

    Project Year: 2017.04  -   

  • 分子軌道法を用いたナノマテリアル内での化学反応に関する研究

    Funded Research  

    Project Year: 2008.12  -  2014.03 

  • 分子内プロトン移動反応に関する理論的研究

    Cooperative Research  

    Project Year: 2008.04  -  2013.03 

  • 高次元アルゴリズムによる分子構造最適化の研究

    The Other Research Programs  

    Project Year: 2004.04  -   

Papers 【 display / non-display

  • 分子軌道エネルギーを説明変数とした機械学習 Invited Reviewed

    寺前 裕之, 玄 美燕, 高山 淳, 岡﨑 真理, 坂本 武史

    Journal of Computational Chemistry, Japan   21 ( 4 )   103 - 105   2023.04

     More details

    Authorship:Lead author, Corresponding author   Language:Japanese   Publishing type:Research paper (scientific journal)  

    DOI: https://doi.org/10.2477/jccj.2023-0001

  • Prediction of molecular properties with machine learning and molecular orbital energies Invited Reviewed

    Hiroyuki Teramae, Meiyan Xuan, Jun Takayama, Mari Okazaki and Takeshi Sakamoto

    AIP Conference Proceedints   2611   02007   2022.11

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: https://doi.org/10.1063/5.0119589

  • Possible Prediction of Molecular Properties with Machine Learning and Molecular Orbital Energies Invited Reviewed

    Hiroyuki Teramae, Xuan Meiyan, Tsukasa Yamashita, Jun Takayama, Mari Okazaki, Takeshi Sakamoto

    Proceedings of International Symposium on Environmental-Life Science and Nanoscales Technology 2019   XVII - XXI   2020.09

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:University of Yangon  

    The ferulic acid is known to have strong antioxidant properties. In the present study, we have investigated the electronic structures of the ferulic acid and its radical extracting the hydrogen atom from its phenolic hydroxyl group. We have discussed the relation of the results with the radical scavenging activity with the DPPH reagent, IC50, measured by Sakamoto et al. by several machine learning models.
    We use Gaussian16 program package to calculate the optimized geometries and the molecular orbitals of FA and its derivatives at RHF/6-31G** level and the radicals of FA and its derivatives which are made by removing the hydrogen atom from the phenolic hydroxyl group. The machine learning is performed with the R/caret packages.
    We use the orbital energy levels of the radical forms of SOMO, SOMO-1, SOMO, LUMO, and LUMO, the neutral forms of HOMO-1, HOMO, LUMO, and LUMO+1, and the energy difference between the radical and neutral forms as the explanatory variables. We make the machine learning with these ten explanatory variables and IC50 value as the explained variable. For the regression method, we use partial least square, random forest, neural network, and krlsRadial.
    All the methods give moderate/strong correlation coefficients and there should be a strong correlation. Furthermore, when we examine the machine learning with only the orbital energy levels of the radical forms, the correlation coefficients are almost the same.
    In conclusion, we confirm the IC50 values of the ferulic acid can be predicted by just molecular orbital energies

  • Theoretical Study on Antioxidant Properties of Ferulic Acid Invited Reviewed

    Hiroyuki Teramae, Xuan Meiyan, Tsukasa Yamashita, Jun Takayama, Mari Okazaki, Takeshi Sakamoto

    18 ( 5 )   211 - 213   2019

     More details

    Authorship:Lead author   Language:Japanese   Publishing type:Research paper (scientific journal)   Publisher:Society of Computer Chemistry, Japan  

    DOI: 10.2477/jccj.2019-0034

  • Ab initio electronic structure calculation of polymononucleotide, a model of B-type DNA Invited Reviewed International journal

    Hiroyuki Teramae, Yuriko Aoki

    AIP Conference Proceedings   2040 ( 1 )   020013   2018

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:American Institute of Physics  

    As an attempt at the electronic structure calculations of the B-type model-DNA, (poly-(guanine) poly-(cytosine)) double helix including sodium atoms as counter cations, hereafter referred as (poly-(dG)poly-(dC), double helix model polymer is performed by means of ab initio Hartree-Fock crystal orbital method adapting the screw axis-symmetry which results in great reduction of computational efforts. All sugar backbones and ions are included in the calculations. At the level of 6-31G basis sets, energy band structures were calculated for the polymers with and without sugar and sodium phosphate and found that the difference is very large when excluding the sodium phosphate. We also calculated the four single helix polymers in order to compare these band structures with the double helix polymononucleotide. The difference is not small especially for the guanine-cytosine polymer.

    DOI: 10.1063/1.5079055

display all >>

Books and Other Publications 【 display / non-display

  • ケモインフォマティクスにおける データ収集の最適化と解析手法

    寺前裕之( Role: Contributor ,  第4章第1節ケモインフォマティクスにおける機械学習モデルの種類と具体的活用法)

    技術情報協会  2023.04  ( ISBN:978-4-86104-944-6

     More details

    Total pages:657   Responsible for pages:209-217   Language:Japanese   Book type:Scholarly book

  • 導電性材料をめぐる最近の動向

    寺前裕之( Role: Sole author)

    材料技術研究協会  1992.04 

     More details

    Language:Japanese   Book type:Scholarly book

  • ポリアセチレンの電子構造

    山邊時雄,寺前裕之( Role: Sole author ,  主要部分の執筆)

    化学同人  1985.04 

     More details

    Language:Japanese   Book type:Scholarly book

Misc 【 display / non-display

  • Relation Between Machine Learning and Chemistry Invited

    2022.03

     More details

    Language:Japanese  

  • PubChem のデータを用いた分子座標の作成‐データベースを用いてGaussian16 の入力ファイルを作成する方法 ‐

    寺前裕之

    城西情報科学研究   29   15 - 26   2022.03

     More details

    Authorship:Lead author, Last author   Language:Japanese   Publishing type:Rapid communication, short report, research note, etc. (bulletin of university, research institution)  

  • 計算化学汎用プログラム 分子設計統合ソフト HyperChem

    寺前裕之

    PETROTECH   30 ( 5 )   346 - 350   2007.01

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (international conference proceedings)   Publisher:(石油学会)  

Presentations 【 display / non-display

  • Prediction of Molecular Properties with Machine Learning and Molecular Orbital Energies Invited International conference

    Hiroyuki Teramae

    ICCMSE2021  2021.09  ICCMSE

     More details

    Event date: 2021.09

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Crete   Country:Greece  

  • 分子軌道エネルギーを説明変数とした機械学習

    寺前裕之, 玄美燕, 高山淳, 岡﨑真理, 坂本武史

    日本コンピューター化学会2022年秋季年会  2022.11  日本コンピュータ化学会

     More details

    Event date: 2022.11

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:長野   Country:Japan  

  • フェルラ酸の抗酸化作用の置換基効果に関する機械学習

    寺前裕之, 玄美燕, 高山淳, 岡﨑真理, 坂本武史

    ケモインフォマティクス討論会  2022.11  日本化学会ケモインフォマティクス部会

     More details

    Event date: 2022.11

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:福岡   Country:Japan  

  • 分子軌道エネルギーと機械学習による分子物性の予測

    寺前裕之, 玄美燕, 高山淳, 岡﨑真理, 坂本武史

    分子科学討論会2022  2022.09 

     More details

    Event date: 2022.09

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:横浜   Country:Japan  

  • 分子軌道エネルギーと機械学習による薬物物性の予測

    寺前裕之, 玄美燕, 山下司, 高山淳, 岡﨑真理, 坂本武史

    分子科学討論会2021  2021.09  分子科学会

     More details

    Event date: 2021.09

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:オンライン  

display all >>

Other research activities 【 display / non-display

  • Editorial board of Journal of Chemistry

    2015.01 - 2018.08

 

Teaching Experience 【 display / non-display

  • 分子物理学

  • 化学情報処理