論文 - 植村 武史
-
Polyamine transport is mediated by both endocytic and solute carrier transport mechanisms in the gastrointestinal tract. 査読あり
Uemura Takeshi, Stringer David E, Blohm-Mangone Karen A, Gerner Eugene W
Am J Physiol Gastrointest Liver Physiol 299 ( 2 ) G517 - G522 2010年08月
記述言語:英語 掲載種別:研究論文(学術雑誌)
The polyamines spermidine and spermine, and their precursor putrescine, are required for cell growth and cellular functions. The high levels of tissue polyamines are implicated in carcinogenesis. The major sources of exogenous polyamines are diet and intestinal luminal bacteria in gastrointestinal (GI) tissues. Both endocytic and solute carrier-dependent mechanisms have been described for polyamine uptake. Knocking down of caveolin-1 protein increased polyamine uptake in colon cancer-derived HCT116 cells. Dietary supplied putrescine was accumulated in GI tissues and liver in caveolin-1 knockout mice more than wild-type mice. Knocking out of nitric oxide synthase (NOS2), which has been implicated in the release of exogenous polyamines from internalized vesicles, abolished the accumulation of dietary putrescine in GI tissues. Under conditions of reduced endogenous tissue putrescine contents, caused by treatment with the polyamine synthesis inhibitor difluoromethylornithine (DFMO), small intestinal and colonic mucosal polyamine contents increased with dietary putrescine levels, even in mice lacking NOS2. Knocking down the solute carrier transporter SLC3A2 in HCT116-derived Hkh2 cells reduced the accumulation of exogenous putrescine and total polyamine contents in DFMO treated cells, relative to non-DFMO-treated cells. These data demonstrate that exogenous putrescine is transported into GI tissues by caveolin-1- and NOS2-dependent mechanisms, but that the solute carrier transporter SLC3A2 can function bidirectionally to import putrescine under conditions of low tissue polyamines.
-
Polyamine modulon in yeast-Stimulation of COX4 synthesis by spermidine at the level of translation. 査読あり
Uemura Takeshi, Higashi Kyohei, Takigawa Miki, Toida Toshihiko, Kashiwagi Keiko, Igarashi Kazuei
Int J Biochem Cell Biol 41 ( 12 ) 2538 - 2545 2009年12月
記述言語:英語 掲載種別:研究論文(学術雑誌)
We proposed that a group of genes whose expression is enhanced by polyamines at the level of translation in Escherichia coli and mammalian cells be referred to as a "polyamine modulon". In Saccharomyces cerevisiae, proteins whose synthesis is enhanced by polyamines at the level of translation were searched for using a polyamine-requiring mutant of S. cerevisiae deficient in ornithine decarboxylase (YPH499 Deltaspe1). Addition of spermidine to the medium recovered the spermidine content and enhanced cell growth of the YPH499 Deltaspe1 mutant by 3-5-fold. Under these conditions, synthesis of COX4, one of the subunits of cytochrome C oxidase (complex IV), was enhanced by polyamines about 2.5-fold at the level of translation. Accordingly, the COX4 gene is the first member of a polyamine modulon in yeast. Polyamines enhanced COX4 synthesis through stimulation of the ribosome shunting of the stem-loop structures (hairpin structures) during the scanning of the 5'-untranslated region (5'-UTR) of COX4 mRNA by 40S ribosomal subunit-Met-tRNA(i) complex.
-
Identification and characterization of a diamine exporter in colon epithelial cells. 査読あり
Uemura Takeshi, Yerushalmi Hagit F, Tsaprailis George, Stringer David E, Pastorian Kirk E, Hawel Leo 3rd, Byus Craig V, Gerner Eugene W
J Biol Chem 283 ( 39 ) 26428 - 26435 2008年09月
記述言語:英語 掲載種別:研究論文(学術雑誌)
SLC3A2, a member of the solute carrier family, was identified by proteomics methods as a component of a transporter capable of exporting the diamine putrescine in the Chinese hamster ovary (CHO) cells selected for resistance to growth inhibition by high exogenous concentrations of putrescine. Putrescine transport was increased in inverted plasma membrane vesicles prepared from cells resistant to growth inhibition by putrescine compared with transport in inverted vesicles prepared from non-selected cells. Knockdown of SLC3A2 in human cells, using short hairpin RNA, caused an increase in putrescine uptake and a decrease in arginine uptake activity. SLC3A2 knockdown cells accumulated higher polyamine levels and grew faster than control cells. The growth of SLC3A2 knockdown cells was inhibited by high concentrations of putrescine. Knockdown of SLC3A2 reduced export of polyamines from cells. Expression of SLC3A2 was suppressed in human HCT116 colon cancer cells, which have an activated K-RAS, compared with their isogenic clone, Hkh2 cells, which lack an activated K-RAS allele. Spermidine/spermine N(1)-acetyltransferase (SAT1) was co-immunoprecipitated by an anti-SLC3A2 antibody as was SLC3A2 with an anti-SAT1 antibody. SLC3A2 and SAT1 colocalized on the plasma membrane. These data provide the first molecular characterization of a polyamine exporter in animal cells and indicate that the diamine putrescine is exported by an arginine transporter containing SLC3A2, whose expression is negatively regulated by K-RAS. The interaction between SLC3A2 and SAT1 suggests that these proteins may facilitate excretion of acetylated polyamines.
-
Identification of a spermidine excretion protein complex (MdtJI) in Escherichia coli. 査読あり
Higashi Kyohei, Ishigure Hiroyuki, Demizu Risa, Uemura Takeshi, Nishino Kunihiko, Yamaguchi Akihito, Kashiwagi Keiko, Igarashi Kazuei
J Bacteriol 190 ( 3 ) 872 - 878 2008年02月
記述言語:英語 掲載種別:研究論文(学術雑誌)
A spermidine excretion protein in Escherichia coli was looked for among 33 putative drug exporters thus far identified. Cell toxicity and inhibition of growth due to overaccumulation of spermidine were examined in an E. coli strain deficient in spermidine acetyltransferase, an enzyme that metabolizes spermidine. Toxicity and inhibition of cell growth by spermidine were recovered in cells transformed with pUCmdtJI or pMWmdtJI, encoding MdtJ and MdtI, which belong to the small multidrug resistance family of drug exporters. Both mdtJ and mdtI are necessary for recovery from the toxicity of overaccumulated spermidine. It was also found that the level of mdtJI mRNA was increased by spermidine. The spermidine content in cells cultured in the presence of 2 mM spermidine was decreased, and excretion of spermidine from cells was enhanced by MdtJI, indicating that the MdtJI complex can catalyze excretion of spermidine from cells. It was found that Tyr4, Trp5, Glu15, Tyr45, Tyr61, and Glu82 in MdtJ and Glu5, Glu19, Asp60, Trp68, and Trp81 in MdtI are involved in the excretion activity of MdtJI.
DOI: 10.1128/JB.01505-07
-
Polyamine uptake by DUR3 and SAM3 in Saccharomyces cerevisiae. 査読あり
Uemura Takeshi, Kashiwagi Keiko, Igarashi Kazuei
J Biol Chem 282 ( 10 ) 7733 - 7741 2007年03月
記述言語:英語 掲載種別:研究論文(学術雑誌)
It has been reported that GAP1 and AGP2 catalyze the uptake of polyamines together with amino acids in Saccharomyces cerevisiae. We have looked for polyamine-preferential uptake proteins in S. cerevisiae. DUR3 catalyzed the uptake of polyamines together with urea, and SAM3 was found to catalyze the uptake of polyamines together with S-adenosylmethionine, glutamic acid, and lysine. Polyamine uptake was greatly decreased in both DUR3- and SAM3-deficient cells. The K(m) values for putrescine and spermidine of DUR3 were 479 and 21.2 mum, respectively, and those of SAM3 were 433 and 20.7 mum, respectively. Polyamine stimulation of cell growth of a polyamine requiring mutant, which is deficient in ornithine decarboxylase, was not influenced by the disruption of GAP1 and AGP2, but it was diminished by the disruption of DUR3 and SAM3. Furthermore, the polyamine stimulation of cell growth of a polyamine-requiring mutant was completely inhibited by the disruption of both DUR3 and SAM3. The results indicate that DUR3 and SAM3 are major polyamine uptake proteins in yeast. We previously reported that polyamine transport protein kinase 2 regulates polyamine transport. It was found that DUR3 (but not SAM3) was activated by phosphorylation of Thr(250), Ser(251), and Thr(684) by polyamine transport protein kinase 2.
-
Identification of the cadaverine recognition site on the cadaverine-lysine antiporter CadB. 査読あり
Soksawatmaekhin Waraporn, Uemura Takeshi, Fukiwake Natsuko, Kashiwagi Keiko, Igarashi Kazuei
J Biol Chem 281 ( 39 ) 29213 - 29220 2006年09月
記述言語:英語 掲載種別:研究論文(学術雑誌)
Amino acid residues involved in cadaverine uptake and cadaverine-lysine antiporter activity were identified by site-directed mutagenesis of the CadB protein. It was found that Tyr(73), Tyr(89), Tyr(90), Glu(204), Tyr(235), Asp(303), and Tyr(423) were strongly involved in both uptake and excretion and that Tyr(55), Glu(76), Tyr(246), Tyr(310), Cys(370), and Glu(377) were moderately involved in both activities. Mutations of Trp(43), Tyr(57), Tyr(107), Tyr(366), and Tyr(368) mainly affected uptake activity, and Trp(41), Tyr(174), Asp(185), and Glu(408) had weak effects on uptake. The decrease in the activities of the mutants was reflected by an increase in the K(m) value. Mutation of Arg(299) mainly affected excretion, suggesting that Arg(299) is involved in the recognition of the carboxyl group of lysine. These results indicate that amino acid residues involved in both uptake and excretion, or solely in excretion, are located in the cytoplasmic loops and the cytoplasmic side of transmembrane segments, whereas residues involved in uptake were located in the periplasmic loops and the transmembrane segments. The SH group of Cys(370) seemed to be important for uptake and excretion, because both were inhibited by the existence of Cys(125), Cys(389), or Cys(394) together with Cys(370). The relative topology of 12 transmembrane segments was determined by inserting cysteine residues at various sites and measuring the degree of inhibition of transport through crosslinking with Cys(370). The results suggest that a hydrophilic cavity is formed by the transmembrane segments II, III, IV, VI, VII, X, XI, and XII.
-
Excretion of putrescine and spermidine by the protein encoded by YKL174c (TPO5) in Saccharomyces cerevisiae. 査読あり
Tachihara Ken, Uemura Takeshi, Kashiwagi Keiko, Igarashi Kazuei
J Biol Chem 280 ( 13 ) 12637 - 12642 2005年04月
記述言語:英語 掲載種別:研究論文(学術雑誌)
The properties of the protein encoded by YKL174c (TPO5) were studied. It was found that TPO5 excretes putrescine effectively and spermidine less effectively. Gamma-aminobutyric acid slightly inhibited the excretion of putrescine, but basic amino acids did not affect excretion, suggesting that TPO5 preferentially recognizes polyamines. Accordingly, yeast cells transformed with the plasmid encoding YKL174c (TPO5) were resistant to toxicity caused by 120 mm putrescine or by 3 mm spermidine, and a mutant with a disrupted YKL174c (TPO5) gene was sensitive to toxicity by 90 mm putrescine. The growth of this mutant was faster than that of the wild-type strain. In parallel, there was an increase in putrescine and spermidine content of the YKL174c (TPO5) mutant compared with wild-type. It is noted that TPO5 functions as a suppressor of cell growth by excreting polyamines. The level of YKL174c (TPO5) mRNA was increased by the addition of polyamines to the medium. The degree of induction of the mRNA was spermine > spermidine > putrescine. The subcellular localization of TPO5 was determined by immunostaining of hemagglutinin-tagged TPO5, and it was found on Golgi or post-Golgi secretory vesicles. Excretion of putrescine and spermidine by TPO5 was reduced in cells that have mutations in the secretory or endocytic pathways, indicating that both processes are involved in the excretion of polyamines.
-
Uptake of putrescine and spermidine by Gap1p on the plasma membrane in Saccharomyces cerevisiae. 査読あり
Uemura Takeshi, Kashiwagi Keiko, Igarashi Kazuei
Biochem Biophys Res Commun 328 ( 4 ) 1028 - 1033 2005年03月
記述言語:英語 掲載種別:研究論文(学術雑誌)
It has been reported that Gap1p on the plasma membrane of Saccharomyces cerevisiae can catalyze the uptake of many kinds of amino acids. In the present study, we found that Gap1p also catalyzed the uptake of putrescine and spermidine, but not spermine. The Km and Vmax values for putrescine and spermidine were 390 and 21 microM, and 4.6 and 0.59 nmol/min/mg protein, respectively. The uptake of putrescine was strongly inhibited by basic amino acids, lysine, arginine, and histidine, whose Ki values were 25-35 microM. Thus, it is deduced that spermidine and basic amino acids have almost the same affinity for Gap1p. When the concentrations of amino acids in the medium were reduced to one-third and 0.5 mM putrescine or 0.1 mM spermidine was added to the medium, accumulation of putrescine or spermidine by Gap1p was observed. Furthermore, when yeast was transformed with the GAP1 gene and cultured in the presence of 60 mM putrescine, cell growth was inhibited through overaccumulation of putrescine. GAP1 mRNA was found to be induced by polyamines. This is the first report of the identification, at a molecular level, of a polyamine uptake protein on the plasma membrane in eukaryotes.
-
Characteristics of the polyamine transporter TPO1 and regulation of its activity and cellular localization by phosphorylation. 査読あり
Uemura Takeshi, Tachihara Ken, Tomitori Hideyuki, Kashiwagi Keiko, Igarashi Kazuei
J Biol Chem 280 ( 10 ) 9646 - 9652 2005年03月
記述言語:英語 掲載種別:研究論文(学術雑誌)
The subcellular localization of the polyamine transporter TPO1 of Saccharomyces cerevisiae was determined by sucrose gradient centrifugation and indirect immunofluorescence microscopy. When expressed from a multi-copy vector, TPO1 was located mainly on the plasma membrane, but with some localization on the vacuolar membrane. Polyamine transport by TPO1 was dependent on pH. Uptake of spermidine and spermine occurred at alkaline pH (pH 8.0), whereas inhibition of spermidine uptake, but not spermine uptake, was observed at acidic pH (pH 5.0). This suggests that TPO1 catalyzes polyamine excretion at acidic pH, similar to the PotE transporter in Escherichia coli. Paraquat, a polyamine analogue, was excreted by TPO1 at a rate comparable with the excretion of spermidine (deduced from the inhibition of spermidine uptake) at pH 5.0. However, excretion of preloaded radiolabeled spermidine and spermine was not observed in intact cells, suggesting that preloaded spermidine (or spermine) exists mainly as spermidine (or spermine)-ribosome complex in cells. The transport activity of TPO1 was enhanced through phosphorylation at Ser19 by protein kinase C and at Thr52 by casein kinase 1. Sorting of TPO1 from the endoplasmic reticulum to the plasma membrane was enhanced through phosphorylation at Ser342 by cAMP-dependent protein kinases 1 and 2.
-
Uptake of GABA and putrescine by UGA4 on the vacuolar membrane in Saccharomyces cerevisiae. 査読あり
Uemura Takeshi, Tomonari Yuki, Kashiwagi Keiko, Igarashi Kazuei
Biochem Biophys Res Commun 315 ( 4 ) 1082 - 1087 2004年03月
記述言語:英語 掲載種別:研究論文(学術雑誌)
The product of the UGA4 gene in Saccharomyces cerevisiae, which catalyzes the transport of 4-aminobutyric acid (GABA), also catalyzed the transport of putrescine. The Km values for GABA and putrescine were 0.11 and 0.69 mM, respectively. The UGA4 protein was located on the vacuolar membrane as determined by the effects of bafilomycin A1 and by indirect immunofluorescence microscopy. Uptake of both GABA and putrescine was inhibited by spermidine and spermine, although these polyamines are not substrates of UGA4. The UGA4 mRNA was induced by exposure to GABA, but not putrescine over 12h. The growth of an ornithine decarboxylase-deficient strain was enhanced by putrescine, and both putrescine and spermidine contents increased, when the cells were expressing UGA4. The results suggest that a substantial conversion of putrescine to spermidine occurs in the cytoplasm even though UGA4 transporter exists on vacuolar membranes.