所属 |
理学部 数学科 |
外部リンク |
論文 【 表示 / 非表示 】
-
Discrete Hamiltonians of discrete Painlevé equations 査読あり
Takafumi Mase, Akane Nakamura, Hidetaka Sakai
Annales de la Faculté des sciences de Toulouse : Mathématiques 6 ( 29 ) 1251 - 1264 2021年04月
記述言語:英語 掲載種別:研究論文(学術雑誌)
-
Uniqueness of polarization for the autonomous 4-dimensional Painlevé-type systems 査読あり 国際誌
Akane Nakamura, Eric Rains
International Mathematics Research Notices 2020年02月
-
The Painlevé divisors of the autonomous 4-dimensional Painlevé-type equations 査読あり
Akane Nakamura
2020年
記述言語:英語 掲載種別:研究論文(学術雑誌)
-
Autonomous limit of 4-dimensional Painlevé-type equations and degeneration of curves of genus two 査読あり 国際誌
Annales de l'Institut Fourier 69 ( 2 ) 845 - 893 2019年
-
Degeneration scheme of 4-dimensional Painlevé-type equations 査読あり
H. Kawakami, H. Sakai
MSJ Memoir 37 25 - 111 2018年
記述言語:英語 掲載種別:研究論文(学術雑誌)
Four 4-dimensional Painlev\'e-type equations are obtained by isomonodromic deformation of Fuchsian equations: they are the Garnier system in two variables, the Fuji-Suzuki system, the Sasano system, and the sixth matrix Painlev\'e system. Degenerating these four source equations, we systematically obtained other 4-dimensional Painlev\'e-type equations. If we only consider Painlev\'e-type equations whose associated linear equations are of unramified type, there are 22 types of 4-dimensional Painlev\'e-type equations: 9 of them are partial differential equations, 13 of them are ordinary differential equations. Some well-known equations such as Noumi-Yamada systems are included in this list. They are written as Hamiltonian systems, and their Hamiltonians are neatly written using Hamiltonians of the classical Painlev\'e equations.
科研費(文科省・学振)獲得実績 【 表示 / 非表示 】
-
高次元パンルヴェ型方程式の非線型・線型対応に関する研究
2020年04月 - 2023年04月
科学研究費補助金 若手研究
中村あかね